Relative Quadrupole Moments of 192,193 Hg Superdeformed Bands. B.C.Busse ¹, P.Fallon ¹, R.Krücken ¹, D.Ackermann ², I.Ahmad ², S.J.Asztalos ¹, D.J.Blumenthal ², M.P.Carpenter ², R.M.Clark ¹, M.A.Deleplanque ¹, R.M.Diamond ¹, S.M.Fischer ², F.Hannachi ⁴, R.V.F.Janssens ², T.L.Khoo ², A.Korichi ⁵, T.Lauritsen ², I.Y.Lee ¹, C.J.Lister ², A.Lopez-Martens ⁴, A.O.Macchiavelli ¹, R.W.MacLeod ¹, E.F.Moore ³, D.Nisius ², G.Schmid ¹, D.Seweryniak ², F.S.Stephens ¹, K.Vetter ¹ ¹ Lawrence Berkeley Laboratory, Berkeley, California 94720 ² Argonne National Laboratory, Argonne, Illinois 60439 ³ North Carolina State University, Raleigh, North Carolina 27695 ⁴ Centre de Spéctrometrie Nucléaire, IN2P3-CNRS bat 104, F-91405, Orsay, France ⁵Institut de Physique Nucléaire, IN2P3-CNRS bat 104, F-91406, Orsay, France Relative quadrupole moments (Q o's) of yrast and excited SD bands can give insight into the deformation-driving effects of specific nucleon configurations and aid in the interpretation of "identical" bands. A pair of "identical" bands will have transition energies that are equal to, or are at the quarter points or half points of, each other. A clear understanding of this phenomenon has yet to be developed. With this in mind, SD states in ^{192,193}Hg were populated simultaneously via the ¹⁷⁶Yb(²²Ne,xn) reaction at a beam energy of 118 MeV. The target consisted of a 500 μ g/cm 2 176 Yb foil evaporated on a 6.8 mg/cm² Au backing. The beam was accelerated by the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, and γ rays were detected by the Gammasphere array which, for this experiment, had 85 Ge detectors. A total of 1.9×10^9 events with a fold ≥ 5 were collected. A Doppler Shift Attenuation Method (DSAM) centroid shift analysis was then performed. Experimental fractional Doppler shifts, $F(\tau)$, were extracted and are shown in the figure for the 192 Hg and 193 Hg SD yrast bands. Calculated $F(\tau)$ curves, that assume a rotational cascade and constant $Q_o(Q_{sf})$ for the inband(sidefeeding) states, are shown for comparison. The stopping powers of Ziegler were used. A lineshape analysis on some transitions in the 192,193 Hg SD bands was also performed, leading to results consistent with the $F(\tau)$ analysis. Comparing the $F(\tau)$ curves allowed several im- portant conclusions. The relative Q_o 's of the yrast SD bands of ¹⁹²Hg and ¹⁹³Hg are different to a significance $> 2 \sigma$, with values of 19.8 \pm 1.2 eb and 17.2 \pm .7 eb respectively. The uncertainty in the sidefeeding time, obtained by χ^{-2} minimization, has been included in the Q_{ρ} errors. Nevertheless, radically different sidefeeding in the two SD Hg nuclei could cause the apparent Q_o difference, although this solution is less likely. Based on current theoretical work, the difference between ¹⁹²Hg and ¹⁹³Hg is unexpected. The experimental Q_o 's of all six SD bands in ¹⁹³Hg are the same to $\approx 1 \sigma$, which seems to eleminate a large polarizing effect of the different single particle levels. This similarity in Q_{α} is difficult to reconcile, given the difference in the ¹⁹²Hg and 193 Hg Q_o 's. Since 192 Hg and 193 Hg have a SD "identical" band relationship, the data may imply that "identical" transition energies don't always lead to identical deformations. This is the first accurate measurement of Q_o 's in an oddmass SD nucleus in the mass 190 region.